
Offer #2025-09115

Doctorant F/H Vérification de la
correction fonctionnelle de composants de
systèmes d'exploitation
The offer description below is in French

Contract type : Fixed-term contract

Level of qualifications required : Graduate degree or equivalent

Fonction : PhD Position

Context

Operating system code (kernel, device drivers) has become increasingly complex,
yet it still involves a

large amount of low level code which manipulates intricate data-structures.
Moreover, the stability of the OS

(operating system) is critical for any computing system, due to its role managing
the other processes and all the

resources of the machine (CPU, memory, I/O access). Therefore, it is important to
check that OS code meets

important correctness properties, such as, in increasing order of difficulty (1) basic
safety (absence of runtime

errors), (2) the preservation of structural invariants, and (3) more advanced
functional properties (e.g., that a

scheduler correctly implements the intended scheduling algorithm).

Static analysis based on abstract interpretation aims at computing program
invariants so as to discharge

the verification of such properties. It is automatic and sound (it never validates a
program that is incorrect)

but incomplete, which means that it may fail to prove the correctness of a program
that meets the property of

interest. Therefore, the practical design of static analyzers remains a grand
challenge. In particular, the design

/public/classic/fr/offres/2022-05154/topdf

of expressive and computable families of predicates requires a lot of effort.

In the case of OS code as described above, several families of static analysis have
achieved impressive

progress. In particular, shape analysis relies on predicates which describe data-
structures of unbounded size in

a compact way, which allows generalizing properties observed over short symbolic
executions into expressive

program invariants, for many programs that manipulate complex data-structures.
In particular, data-structures

like linked pointer structures (lists and trees), and linear structures (arrays) are well
handled by existing shape

analysis techniques.

However, many important issues remain. In particular, OS code often mixes and
overlays arrays and linked

structures. Such code often relies on structural patterns that are not so well-covered
by existing shape analyses.

If we consider the combinations of arrays and linked-structures, several works (by
P. Sotin, J. Liu and X. Rival

[4, 5]) have allowed to describe precisely structures that consist of an array that
contains a linked list structure,

however, more complex combinations are not handled by any existing shape
analysis. For instance, structures

made of an array the elements of which point to separate linked lists cannot be
described by existing abstract

domains. Another poorly handled structural pattern consists of overlaid lists,
where large structures are shared

in multiple lists [2].

In this thesis, we propose to design abstract domains for combinations of arrays
and linked structures so

as to handle both aforementioned patterns. The design of abstract domains will
include the formalization of

abstract elements, of the concretization function, and of the abstract operations.
Moreover, we will implement

the proposed abstract domains into the MemCAD static analyzer [1, 3], which is
developed in the ANTIQUE

INRIA Research Team, and we will evaluate the implementation based on existing
OS code, and assess whether

it can achieve the proof of aforementioned properties (1), (2), and (3). Finally, we
expect our study to also

produce generalization of abstract domains used in shape analysis.

Assignment

Operating system code (kernel, device drivers) has become increasingly complex,
yet it still involves a

large amount of low level code which manipulates intricate data-structures.
Moreover, the stability of the OS

(operating system) is critical for any computing system, due to its role managing
the other processes and all the

resources of the machine (CPU, memory, I/O access). Therefore, it is important to
check that OS code meets

important correctness properties, such as, in increasing order of difficulty (1) basic
safety (absence of runtime

errors), (2) the preservation of structural invariants, and (3) more advanced
functional properties (e.g., that a

scheduler correctly implements the intended scheduling algorithm).

Static analysis based on abstract interpretation aims at computing program
invariants so as to discharge

the verification of such properties. It is automatic and sound (it never validates a
program that is incorrect)

but incomplete, which means that it may fail to prove the correctness of a program
that meets the property of

interest. Therefore, the practical design of static analyzers remains a grand
challenge. In particular, the design

of expressive and computable families of predicates requires a lot of effort.

In the case of OS code as described above, several families of static analysis have
achieved impressive

progress. In particular, shape analysis relies on predicates which describe data-
structures of unbounded size in

a compact way, which allows generalizing properties observed over short symbolic
executions into expressive

program invariants, for many programs that manipulate complex data-structures.
In particular, data-structures

like linked pointer structures (lists and trees), and linear structures (arrays) are well
handled by existing shape

analysis techniques.

However, many important issues remain. In particular, OS code often mixes and
overlays arrays and linked

structures. Such code often relies on structural patterns that are not so well-covered
by existing shape analyses.

If we consider the combinations of arrays and linked-structures, several works (by
P. Sotin, J. Liu and X. Rival

[4, 5]) have allowed to describe precisely structures that consist of an array that
contains a linked list structure,

however, more complex combinations are not handled by any existing shape
analysis. For instance, structures

made of an array the elements of which point to separate linked lists cannot be
described by existing abstract

domains. Another poorly handled structural pattern consists of overlaid lists,
where large structures are shared

in multiple lists [2].

In this thesis, we propose to design abstract domains for combinations of arrays
and linked structures so

as to handle both aforementioned patterns. The design of abstract domains will
include the formalization of

abstract elements, of the concretization function, and of the abstract operations.
Moreover, we will implement

the proposed abstract domains into the MemCAD static analyzer [1, 3], which is
developed in the ANTIQUE

INRIA Research Team, and we will evaluate the implementation based on existing
OS code, and assess whether

it can achieve the proof of aforementioned properties (1), (2), and (3). Finally, we
expect our study to also

produce generalization of abstract domains used in shape analysis.

Main activities

Operating system code (kernel, device drivers) has become increasingly complex,
yet it still involves a

large amount of low level code which manipulates intricate data-structures.
Moreover, the stability of the OS

(operating system) is critical for any computing system, due to its role managing
the other processes and all the

resources of the machine (CPU, memory, I/O access). Therefore, it is important to
check that OS code meets

important correctness properties, such as, in increasing order of difficulty (1) basic
safety (absence of runtime

errors), (2) the preservation of structural invariants, and (3) more advanced
functional properties (e.g., that a

scheduler correctly implements the intended scheduling algorithm).

Static analysis based on abstract interpretation aims at computing program
invariants so as to discharge

the verification of such properties. It is automatic and sound (it never validates a
program that is incorrect)

but incomplete, which means that it may fail to prove the correctness of a program
that meets the property of

interest. Therefore, the practical design of static analyzers remains a grand
challenge. In particular, the design

of expressive and computable families of predicates requires a lot of effort.

In the case of OS code as described above, several families of static analysis have
achieved impressive

progress. In particular, shape analysis relies on predicates which describe data-
structures of unbounded size in

a compact way, which allows generalizing properties observed over short symbolic
executions into expressive

program invariants, for many programs that manipulate complex data-structures.
In particular, data-structures

like linked pointer structures (lists and trees), and linear structures (arrays) are well
handled by existing shape

analysis techniques.

However, many important issues remain. In particular, OS code often mixes and
overlays arrays and linked

structures. Such code often relies on structural patterns that are not so well-covered
by existing shape analyses.

If we consider the combinations of arrays and linked-structures, several works (by
P. Sotin, J. Liu and X. Rival

[4, 5]) have allowed to describe precisely structures that consist of an array that
contains a linked list structure,

however, more complex combinations are not handled by any existing shape
analysis. For instance, structures

made of an array the elements of which point to separate linked lists cannot be
described by existing abstract

domains. Another poorly handled structural pattern consists of overlaid lists,
where large structures are shared

in multiple lists [2].

In this thesis, we propose to design abstract domains for combinations of arrays
and linked structures so

as to handle both aforementioned patterns. The design of abstract domains will
include the formalization of

abstract elements, of the concretization function, and of the abstract operations.
Moreover, we will implement

the proposed abstract domains into the MemCAD static analyzer [1, 3], which is
developed in the ANTIQUE

INRIA Research Team, and we will evaluate the implementation based on existing
OS code, and assess whether

it can achieve the proof of aforementioned properties (1), (2), and (3). Finally, we
expect our study to also

produce generalization of abstract domains used in shape analysis.

Skills

Compétences techniques et niveau requis :

Langues :

Compétences relationnelles :

Compétences additionnelles appréciées :

Benefits package

Restauration subventionnée

Transports publics remboursés partiellement
Congés: 7 semaines de congés annuels + 10 jours de RTT (base temps plein)
+ possibilité d'autorisations d'absence exceptionnelle (ex : enfants malades,
déménagement)
Possibilité de télétravail (après 6 mois d'ancienneté) et aménagement du
temps de travail
Équipements professionnels à disposition (visioconférence, prêts de
matériels informatiques, etc.)
Prestations sociales, culturelles et sportives (Association de gestion des
œuvres sociales d'Inria)
Accès à la formation professionnelle
Sécurité sociale

General Information

Theme/Domain : Proofs and Verification
Software engineering (BAP E)
Town/city : Paris
Inria Center : Centre Inria de Paris
Starting date : 2025-09-01
Duration of contract : 3 years
Deadline to apply : 2025-07-31

Contacts

Inria Team : ANTIQUE
PhD Supervisor :
Rival Xavier / Xavier.Rival@inria.fr

About Inria
Inria is the French national research institute dedicated to digital science and
technology. It employs 2,600 people. Its 200 agile project teams, generally run
jointly with academic partners, include more than 3,500 scientists and engineers
working to meet the challenges of digital technology, often at the interface with
other disciplines. The Institute also employs numerous talents in over forty
different professions. 900 research support staff contribute to the preparation and
development of scientific and entrepreneurial projects that have a worldwide
impact.

The keys to success

Vous pouvez donner là, un portrait à "gros traits" du (de la) collaborateur(trice)
attendu(e) : ce que vous voyez comme nécessaire et suffisant et qui peut associer :

goûts et appétences,
domaine d'excellence,
éléments de personnalité ou de caractère,
savoir et savoir faire transversaux...

http://www.inria.fr/centre/paris
https://www.inria.fr/equipes/ANTIQUE
mailto:Xavier.Rival@inria.fr

Cette rubrique permet de compléter et alléger (réduire) la liste plus formelle des
compétences :

"Se sentir à l'aise dans un environnement de dynamique scientifique, aimer
apprendre et écouter sont des qualités essentielles pour réussir cette
mission."
" Passionné(e) par l'innovation, avec une expertise dans le développement
Ruby on Rail et une grande capacité de conviction. Une thèse dans le
domaine *** constitue un réel atout."

Warning : you must enter your e-mail address in order to save your application to
Inria. Applications must be submitted online on the Inria website. Processing of
applications sent from other channels is not guaranteed.

Instruction to apply

Defence Security :
This position is likely to be situated in a restricted area (ZRR), as defined in Decree
No. 2011-1425 relating to the protection of national scientific and technical
potential (PPST).Authorisation to enter an area is granted by the director of the unit,
following a favourable Ministerial decision, as defined in the decree of 3 July 2012
relating to the PPST. An unfavourable Ministerial decision in respect of a position
situated in a ZRR would result in the cancellation of the appointment.

Recruitment Policy :
As part of its diversity policy, all Inria positions are accessible to people with
disabilities.

